New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin.

نویسندگان

  • Robin V Gunning
  • Ho T Dang
  • Fred C Kemp
  • Ian C Nicholson
  • Graham D Moores
چکیده

In Australia, the cotton bollworm, Helicoverpa armigera, has a long history of resistance to conventional insecticides. Transgenic cotton (expressing the Bacillus thuringiensis toxin Cry1Ac) has been grown for H. armigera control since 1996. It is demonstrated here that a population of Australian H. armigera has developed resistance to Cry1Ac toxin (275-fold). Some 70% of resistant H. armigera larvae were able to survive on Cry1Ac transgenic cotton (Ingard) The resistance phenotype is inherited as an autosomal semidominant trait. Resistance was associated with elevated esterase levels, which cosegregated with resistance. In vitro studies employing surface plasmon resonance technology and other biochemical techniques demonstrated that resistant strain esterase could bind to Cry1Ac protoxin and activated toxin. In vivo studies showed that Cry1Ac-resistant larvae fed Cy1Ac transgenic cotton or Cry1Ac-treated artificial diet had lower esterase activity than non-Cry1Ac-fed larvae. A resistance mechanism in which esterase sequesters Cry1Ac is proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutated cadherin alleles from a field population of Helicoverpa armigera confer resistance to Bacillus thuringiensis toxin Cry1Ac.

The cotton bollworm Helicoverpa armigera is the major insect pest targeted by cotton genetically engineered to produce the Bacillus thuringiensis toxin (transgenic Bt cotton) in the Old World. The evolution of this pest's resistance to B. thuringiensis toxins is the main threat to the long-term effectiveness of transgenic Bt cotton. A deletion mutation allele (r(1)) of a cadherin gene (Ha_BtR) ...

متن کامل

A Toxin-Binding Alkaline Phosphatase Fragment Synergizes Bt Toxin Cry1Ac against Susceptible and Resistant Helicoverpa armigera

Evolution of resistance by insects threatens the continued success of pest control using insecticidal crystal (Cry) proteins from the bacterium Bacillus thuringiensis (Bt) in sprays and transgenic plants. In this study, laboratory selection with Cry1Ac yielded five strains of cotton bollworm, Helicoverpa armigera, with resistance ratios at the median lethal concentration (LC50) of activated Cry...

متن کامل

Quantitative Analysis of Fitness Costs Associated with the Development of Resistance to the Bt Toxin Cry1Ac in Helicoverpa armigera

Transgenic Bacillus thuringiensis (Bt) crops play an increasing role in pest control, and resistance management is a major issue in large-scale cultivation of Bt crops. The fitness cost of resistance in targeted pests is considered to be one of the main factors delaying resistance when using the refuge strategy. By comparing 10 resistant Helicoverpa armigera (Hubner) strains, showing various re...

متن کامل

Cis-mediated down-regulation of a trypsin gene associated with Bt resistance in cotton bollworm

Transgenic plants producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are useful for pest control, but their efficacy is reduced when pests evolve resistance. Here we examined the mechanism of resistance to Bt toxin Cry1Ac in the laboratory-selected LF5 strain of the cotton bollworm, Helicoverpa armigera. This strain had 110-fold resistance to Cry1Ac protoxin and 39-f...

متن کامل

Distribution and Metabolism of Bt-Cry1Ac Toxin in Tissues and Organs of the Cotton Bollworm, Helicoverpa armigera

Crystal (Cry) proteins derived from Bacillus thuringiensis (Bt) have been widely used in transgenic crops due to their toxicity against insect pests. However, the distribution and metabolism of these toxins in insect tissues and organs have remained obscure because the target insects do not ingest much toxin. In this study, several Cry1Ac-resistant strains of Helicoverpa armigera, fed artificia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 71 5  شماره 

صفحات  -

تاریخ انتشار 2005